вторник, 27 декабря 2016 г.

Oracle: Lru буферный кэш

Список статей о внутреннем устройстве Oracle:

Следующий аспект больших бд, у которых все данные не способны поместиться в памяти - кеширование частоиспользуемых данных в памяти.

В Oracle для кэширования используется модифицированный алгоритм LRU.

Lru (least recent used) кэш — буфер в памяти для быстрого доступа к часто используемым элементам.
Lru кэш представляет из себя двусвязный список (2Linked List), вначале которого наиболее часто используемые элементы, а в конце - редко.
Для ускорения произвольного доступа над списком создается хэш массив (Hash Map) ссылок на элементы двусвязанного списка:

Раньше я уже описывал lru кэш со стороны разработчика бд: Ядро oracle, сегодня копнем немного глубже, с кодом lru кэша на java.


Двусвязный список с дополнительным счетчиком обращений для хранения LRU:
//двухсвязный список
class Node<Value> {
 //ключ списка
 int key;
 
 //абстрактное значение
 Value value;
 
 //счетчик обращений к элементу
 int cnt;
 
 //указатель на предыдущий элемент
 Node prev;
 
 //указатель на следующий элемент
 Node next;
 
 //элемент был перемещен из конца списка в начало
 boolean swaped;
 
 public Node(int key, Value value){
  this.key = key;
  this.value = value;
  this.cnt = 1;
  this.swaped = false;
 }

При обращении к элементу списка увеличиваем счетчик обращений "cnt":
 //получить значение из списка
 public Value getValue() {
  //увеличиваем счетчик обращений
  cnt++;
  //сбрасываем признак смещений, если элемент был прочитан
  this.swaped = false;
  
  return value;
 }
 
 //установить значение
 public void setValue(Value val) {
  this.value = val;
  //также увеличиваем счетчик
  cnt++;
  //сбрасываем признак смещений, если элемент был перезаписан
  this.swaped = false;
 } //setValue
} //Node

Класс Lru дополняется хэш массивом "map" в котором для ускорения доступа количество хэш секций (capacity) >= числу элемнтов в списке;
И стандартные указатель на начало "head" и конец "end" списка.
Дополнительное изменение в Oracle - указатель на середину списка "cold", где начинаются холодные данные.
public class Lru<Value> {
 
 //доступной число элементов в кэше
 int capacity;
 
 //хэш массив элементов для быстрого доступа
 HashMap<Integer, Node> map;
 
 //указатель на начало (горячие элементы)
 Node head = null;
 
 //указатель на середину (начало холодных элементов)
 Node cold = null;
 
 //указатель на конец (самый редкоиспользуемый)
 Node end = null;
 
 //число элементов в кэше
 int cnt;
 
 
 //конкструктор с числом элементов в кэше
 public Lru (int capacity) {
  this.capacity = capacity;
  
  //хэш массив создаем с нужным числом секций = загруженности
  map = new HashMap<Integer, Node>(capacity);
 }

Для получения элемента используется хэш массив, без последовательного просмотра всего списка:
 //получить элемент из кэша
 public Value get(int key) {
  //быстрое извлечение их хэш массива
  if(map.containsKey(key)) {
   //и инкремент счетчика обращений
   return (Value) map.get(key).getValue();
  }
  
  return null;
 } //get

Если элементов в списке меньше размер буфера, то используется обычный алгоритм LRU - новые элементы добавляются в начало списка, а старые вытесняются вправо, пока не дойдут до конца списка.
 //места достаточно, добавляем вначало
 protected void addHead(Node n) {
  
  //первый элемент
  if(this.head == null) {
   //устанавливаем начало и конец = элементу
   this.head = n;
   this.end = n;
  } else {
   
   //вставляем вначало
   
   //следующий для нового элемента = начало списка
   n.next = this.head;
   
   //предыдущий для начала списка = новый элемент
   this.head.prev = n;     
   this.head = n;
   
   //второй элемент
   if(this.end.prev == null) {
    //предыдущий для конца = новый элемент
    this.end.prev = n;
   }
  }    
  
  //устанавливаем середину
  if(cnt == capacity / 2) {
   this.cold = n;
  }
  
  //счетчик элементов + 1
  cnt++;
 } //addHead

У этого подхода есть существенный минус: редкоиспользуемый элемент может случайно вытеснить из списка популярный блок, который не вызывался небольшой период времени, за который он успел сместиться до конца.
Для решения этой проблемы Oracle применяет 2 подхода:
1. Если в конце элемент со счетчиком обращений = 1, то он открепляется от списка, а новый блок помещается в среднюю точку cold.
Для этого ссылки соседей открепляются друг от друга и перенацеливаются на новый блок, который становится новой серединой.
 //удаляем конца списка
 private void delEnd() {
  //из хэш массива
  map.remove(this.end.key);
  
  //и делаем концом списка = предыдущий элемент
  this.end = this.end.prev;
  this.end.next = null;
 } //delEnd
 
 //вконце малопопулярный блок
 protected void addColdUnPop(Node n) {
  //удаляем конец
  delEnd();
  
  //у старой середины изменяем счетчик на 1
  if(this.cold.swaped) {
   //если смещенный элемент не был ни разу считан 
   //и дошел до середины, 
   //то сбрасываем счетчик в 1
   this.cold.cnt = 1;
   this.cold.swaped = false;
  }
  
  //новый блок в середину = cold
  
  //проставляем ссылки у нового элемента
  n.prev = this.cold.prev;
  n.next = this.cold;
  
  //и разрываем связи и соседей
  n.prev.next = n;
  n.next.prev = n;
  this.cold = n;
 } //addColdUnPop

2. Если в конце популярный элемент со счетчиком > 1 , тогда последний блок открепляется, счетчик обращений делится на 2 и этот блок перемещается в начало списка.
Такой элемент помечается флагом swaped = true, который сбрасывается при любом последующем обращении к элементу.
Это предотвращает случайное вытеснение популярного блока из памяти.
Середина списка также смещается влево, одновременно делая число обращений = 1 у новой элемента-середины, если к ней никто не обращался за время смещения от начала до середины (swaped = true).
Новый блок помещается в центр списка cold.
 //вконце популярный блок
 protected void addColdPop(int key, Value value) {
  //делим счетчик на пополам
  this.end.cnt = this.end.cnt / 2;  
  
  //открепляем конец
  Node n = this.end;
  
  //удаляем конец
  delEnd();
  
  //конец перемещаем в начало
  n.prev = null;
  n.next = this.head;
  this.head.prev = n;     
  this.head = n;
  
  //помечаем, что элемент был перемещен из конца в начало
  this.head.swaped = true;
  
  //смещаем середину на 1 влево
  if(this.cold.swaped) {
   //если смещенный элемент не был ни разу считан 
   //и дошел до середины, 
   //то сбрасываем счетчик в 1
   this.cold.cnt = 1;
   this.cold.swaped = false;
  }
  this.cold = this.cold.prev;
  
  //рекурсивно пытаемся вставить вконец
  //TODO: если все популярные? то вставка будет идти очень долго
  this.set(key, value);
 } //addColdPop


События ожиданий связанные с наполнением буферного кэша:
* Buffer busy waits / read by other session - сессия пытается считать блок, который сейчас читается в кэш или модифицируется в кэше другой сессией.

Полный исходный код можно посмотреть тут: https://github.com/pihel/java/blob/master/cache/lru.java